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Abstract: In this paper we implement six different learning algorithms in Optical
Character Recognition (OCR) problem and achieve the criteria of end-time,
number of iterations, train-set performance, test-set performance, validate-set
performance and overall performance of these methods and compare them. Finally,
we show the advantages and disadvantages of each method.
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1. Introduction

Optical Character Recognition (OCR) is a field of research in pattern recognition,
artificial intelligence and machine vision. It refers to the mechanical or electronic
translation of images of handwritten, typewritten or printed text into machine-
editable text [1].

Besides, the extensive applications of character recognition in recognizing the
numbers on bank checks [2], car plate numbers [3], etc., have caused varieties of
new systems, such as the OCR system to be developed [4]. In character recognition
references, several different methods, such as the decision tree
[5, 6], fuzzy set theory [7-10], artificial neural networks [11, 12], support vector
machines [13, 14], hidden Markov model [15-18] or any other significant hybrid of
these methods [19, 20] are exploited.

Feature extraction methods for handwritten characters and digits have been
mainly based on two types of features: (a) statistically derived from the statistical
distribution of points and (b) structural. The most common statistical features used
for character representation are: (a) zoning, where the character is divided into
several zones and the features are extracted from the densities in each zone [21], or
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from measuring the direction of the character contour by computing histograms of
chain codes in each zone [22], (b) projections [23] and (c) crossings, that consist of
the number of transitions from foreground to background pixels along horizontal
and vertical lines and distances, that rely on the calculation of the distance of the
first foreground pixel detected from the upper/lower (left/right) boundaries of the
image along vertical (horizontal) lines [24].

The document image analysis has been accentuated as one of the main
research issues for about three decades and several methods for recognition of
Indian [25, 26], Thai [18], Chinese [27-30] and Japanese [31-33] documents have
been proposed. Also, numerous researches have been realized on recognition of
Farsi and Arabic texts [1, 4, 34-39]

The process of OCR algorithms is shown in Fig. 1.

This paper is organized as follows: In Section 2 the learning method that we
use in this paper is briefly described. In Section 3 we implement these methods and
getting the results, compare them and finally conclude the paper by Section 4.

Image I—)l Morphological .
[ Restoration Process Segmentation
Image Feature
enhancement Extraction
[ Scanned Image ] [ Character ](_[ Neural Network ]

Fig. 1. Stages of OCR that a neural network uses

2. Preliminaries

A number of advanced algorithms have been proposed in neural networks learning
so far. Methods, such as conjugate gradients [40], Quasi-Newton are considered
popular choices for training feed-forward neural networks. These algorithms
attempt to use second derivative-related information to accelerate the learning
process [41]. In the following subsections the methods are briefly discussed.

2.1. Fletcher-Powell Conjugate Gradient (CGF)

All the conjugate gradient algorithms start by searching in the steepest descent
direction (negative of the gradient) at the first iteration:

(1) Po = —Yo-
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A line search is then performed to determine the optimal distance to move
along the current search direction:

(2) Xg+1 = X + Qg Pk

Then the next search direction is determined so that it is conjugate to the
previous search directions. The general procedure for determining the new search
direction is to combine the new steepest descent direction with the previous search
direction:

(3) Pk = —9k + BkPi-1 -

The various versions of the conjugate gradient algorithm are distinguished by
the manner, in which the constant g is computed. For Fletcher-Reeves method
given in [42], the procedure updated is

@) o = B

Ih-19k-1

This is the ratio of the norm squared of the current gradient to the norm
squared of the previous gradient [42-43].

2.2. Polak-Ribiére Conjugate Gradient (CGP)

Polak and Ribiére proposed another version of the conjugate gradient algorithm. As
with Fletcher-Reeves algorithm, the search direction at each iteration is

®) Pk = —9k + BrPr-1-
For the Polak-Ribiére update, the constant gy is
Ag};—lgk
6 = i
( ) ﬁk 91£—1gk—1

This is the inner product of the previous change in the gradient with the
current gradient divided by the norm squared of the previous gradient [42-43].

2.3. Conjugate Gradient with Powell/Beale restarts (CGB)

For all conjugate gradient algorithms, the search direction is periodically reset to the
negative of the gradient. The standard reset point occurs when the number of
iterations is equal to the number of network parameters (weights and biases), but
there are other reset methods that can improve the training efficiency.

Such a reset method was proposed by Powell [44], based on an earlier
version proposed by Beale [45]. This technique restarts if there is very little
orthogonality left between the current gradient and the previous gradient. This is
tested by equation

(7 |98-19k| = 0.2] g, |I%

If this condition is satisfied, the search direction is reset to the negative of the
gradient.
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2.4. Scaled Conjugate Gradient (SCG)

Each of the conjugate gradient algorithms requires a line search at each iteration.
This line search is computationally expensive, because it requires the network
response to all training inputs to be computed several times for each search. SCG
developed by Mol ler [46], was designed to avoid the time-consuming line search.
This algorithm combines the model-trust region approach with the conjugate
gradient approach.

2.5. One Step Secant (OSS)

The OSS method is an attempt to bridge the gap between the conjugate gradient
algorithms and the quasi-Newton (secant) algorithms. This algorithm does not store
the complete Hessian matrix; it assumes that at each iteration, the previous Hessian
was the identity matrix. This has the additional advantage that the new search
direction can be calculated without computing the matrix inverse [47].

2.6. Resilient Back-propagation (RP)

The most popular training algorithm of this category is the batch BP [48]. It is a
first-order method that minimizes the error function by updating the weights using
the steepest descent method [41].

The purpose of the Resilient back propagation (Rprop) training algorithm is to
eliminate the harmful effects of the magnitudes of the partial derivatives.

Only the sign of the derivative can determine the direction of the weight
update; the magnitude of the derivative has no effect on the weight update. The size
of the weight change is determined by a separate update value. The update value for
each weight and bias is increased by a factor whenever the derivative of the
performance function with respect to that weight has the same sign for two
successive iterations. The update value is decreased by a factor whenever the
derivative with respect to that weight changes the sign from the previous iteration.
If the derivative is zero, the update value remains the same. When the weights are
oscillating, the weight change is reduced. If the weight continues to change in the
same direction for several iterations, the magnitude of the weight change
increases [49].

3. Experimental results

We have above implemented the Gradient algorithm on char74K Database [50]
with MATLAB (Version 2012a) 10 times. The properties of the artificial neural
network and the computer we used are listed in Table 1. You can see the results and
the comparison among the methods in Figs 2-8.

Table 1. Properties of our system and the neural network

Train set | Test set | Validate set| Hidden | No nodes in each

size size size layer hidden layer Output|Performance Computer

Apple MacBook
Pro MD101

10850 | 2325 2325 2 30 62 1075

117



500
450
400
350
300
250
200
150
100

50

Iteration

=pp |
=5 |
oGP

a=CGB |
a(GF |
om0ss |

Iteration Comparison

| 124

| 245 |

10

Fig. 2. Time comparisons

500
450
400
350
300
250
200
150
100

50

Time (s)

Time Comparison

e=(msRp

=0=5C6

“ir=CGP

==( (R

293

194

161

===CGF

194

161

=0=0SS

156

46

142

Fig. 2 proves that the OSS learning method is better than the other methods
with respect to the time comparison. Except for two runs, OSS has a great end time.

At the next position the RP method is located. RP has the best stability in
running; it means that RP method has a little difference end time compared to the
others. The upper end time of RP is 144 and the lower end time is 88. On the other
hand, CGF has the worst stability that means that if you want to use this method,
you must get several runs.

In Fig. 3 we show the number of iterations at each run of the methods. As
expected for the low end time of OSS method, OSS has a low number of iterations,
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but if you look carefully, you will see that RP has a higher number of iterations, it
means more iterations for one second in RP than OSS or another method. If we
divide the iterations in time, we can see that at each run RP has a better result than
the other methods.

Train-Set Performance Comparison
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Fig. 4. Train-performance comparisons
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Fig. 5. Performance comparisons
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output data that th
performance numb

Fig. 7. Validate-performance comparisons

network that has good predictive ability and low generalization error.

In Fig. 4 the
again we see that
others, so that this
error. At the next

train-set performance at each run of the methods is shown and
the RP method has the low performance number among the
method has the best predictive ability and a low generalization
position SCG method is found. This method in two cases of

running is better than RP, but it does not have the stability of RP.

In Fig. 5 th
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network in each run of the methods is shown. As you can see, the results in Figs 5-7
are very similar to Fig. 4.
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In Fig. 8 we get the time average from 10 times run of the methods. As
expected, OSS method with 53 end-time average has been accomplished earlier
than the other methods. At the next position RP method is located with 122 end-
time average, and so on. The significant point in this figure is the huge difference
end-time of some methods, for example, the end-time difference of RP method and
0SS method in Fig. 8 is 69, the difference end-time of RP method and CGF is 113,
and the difference end-time of CGB method and SCG is 79.
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Fig. 9 shows the average of the iterations number of the methods. The highest
number of iterations means that the method makes an effort to decrease the
difference between the output of the neural network and the target set.

For the speed test of the neural network we divide the number of iterations to
time in order to specify how many iterations has got each method in one second. In
average, OSS method has 0.81 iteration per second, RP method has 2.1 iterations
per second, CGF method has 0.85 iteration per second, CGB method has 0.93
iteration per second, CGP method has 0.86 iteration per second, SCG method has
1.01 iteration per second.

In Fig. 10 the average of the train-set performance of each method is shown.
Fig. 11 presents the average of the validate-set performance. Fig. 12 shows the
average of the test-set performance and Fig. 13 presents the average of the overall
performance of each method.
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Fig. 10. Train-set performance average
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Fig. 11. Validate-set performance average
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Test-Set Performance Average
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Fig. 12. Test-set performance average

Overall Performance Average
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Fig. 13. Overall performance average

In all figures the RP method has the least difference between the input and
output of the neural network. At the second place SCG method comes, CGP and
CGB methods have almost similar results in performance and take the third and the
fourth place.

OSS and CGF methods have similar results, but a relatively large difference
compared to other methods and take the fifth and the sixth place.

123



4. Conclusion

In this paper we implement six different learning algorithms. OSS is good with
respect to end-time but not so good in performance, RP method is good for OCR
because of the low end-time and good performance. Besides, RP method has the
best stability and a high number of iterations at each run, SCG method has good
performance, but it does not have a good end-time, CGP has an average
performance and it takes too long to end, CGP is average in both time and
performance. CGB method has the worst performance and an average end-time.
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