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Abstract: In this paper we implement six different learning algorithms in Optical 
Character Recognition (OCR) problem and achieve the criteria of end-time, 
number of iterations, train-set performance, test-set performance, validate-set 
performance and overall performance of these methods and compare them. Finally, 
we show the advantages and disadvantages of each method. 
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1. Introduction 

Optical Character Recognition (OCR) is a field of research in pattern recognition, 
artificial intelligence and machine vision. It refers to the mechanical or electronic 
translation of images of handwritten, typewritten or printed text into machine-
editable text [1]. 

Besides, the extensive applications of character recognition in recognizing the 
numbers on bank checks [2], car plate numbers [3], etc., have caused varieties of 
new systems, such as the OCR system to be developed [4]. In character recognition 
references, several different methods, such as the decision tree  
[5, 6], fuzzy set theory [7-10], artificial neural networks [11, 12], support vector 
machines [13, 14], hidden Markov model [15-18] or any other significant hybrid of 
these methods [19, 20] are exploited. 

Feature extraction methods for handwritten characters and digits have been 
mainly based on two types of features: (a) statistically derived from the statistical 
distribution of points and (b) structural. The most common statistical features used 
for character representation are: (a) zoning, where the character is divided into 
several zones and the features are extracted from the densities in each zone [21], or 
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from measuring the direction of the character contour by computing histograms of 
chain codes in each zone [22], (b) projections [23] and (c) crossings, that consist of 
the number of transitions from foreground to background pixels along horizontal 
and vertical lines and distances, that rely on the calculation of the distance of the 
first foreground pixel detected from the upper/lower (left/right) boundaries of the 
image along vertical (horizontal) lines [24]. 

The document image analysis has been accentuated as one of the main 
research issues for about three decades and several methods for recognition of 
Indian [25, 26], Thai [18], Chinese [27-30] and Japanese [31-33] documents have 
been proposed. Also, numerous researches have been realized on recognition of 
Farsi and Arabic texts [1, 4, 34-39] 

The process of OCR algorithms is shown in Fig. 1. 
This paper is organized as follows: In Section 2 the learning method that we 

use in this paper is briefly described. In Section 3 we implement these methods and 
getting the results, compare them and finally conclude the paper by Section 4. 

 
Fig. 1. Stages of OCR that a neural network uses  

2. Preliminaries 

A number of advanced algorithms have been proposed in neural networks learning 
so far. Methods, such as conjugate gradients [40], Quasi-Newton are considered 
popular choices for training feed-forward neural networks. These algorithms 
attempt to use second derivative-related information to accelerate the learning 
process [41]. In the following subsections the methods are briefly discussed. 

2.1. Fletcher-Powell Conjugate Gradient (CGF) 

All the conjugate gradient algorithms start by searching in the steepest descent 
direction (negative of the gradient) at the first iteration: 

଴݌   (1) ൌ  െ݃଴. 
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A line search is then performed to determine the optimal distance to move 
along the current search direction: 

௞ାଵݔ   (2) ൌ ௞ݔ ൅  .௞݌௞ߙ

Then the next search direction is determined so that it is conjugate to the 
previous search directions. The general procedure for determining the new search 
direction is to combine the new steepest descent direction with the previous search 
direction: 

௞݌   (3) ൌ െ݃௞ ൅  . ௞ିଵ݌௞ߚ

The various versions of the conjugate gradient algorithm are distinguished by 
the manner, in which the constant ߚ௞ is computed. For Fletcher-Reeves method 
given in [42], the procedure updated is 

௞ߚ   (4) ൌ ௚ೖ
T௚ೖ

௚ೖషభ
T ௚ೖషభ

. 

This is the ratio of the norm squared of the current gradient to the norm 
squared of the previous gradient [42-43]. 

2.2. Polak-Ribiére Conjugate Gradient (CGP) 

Polak and Ribiére proposed another version of the conjugate gradient algorithm. As 
with Fletcher-Reeves algorithm, the search direction at each iteration is  

௞݌   (5) ൌ െ݃௞ ൅  .௞ିଵ݌௞ߚ

For the Polak-Ribiére update, the constant ߚ௞ is  

௞ߚ   (6) ൌ ∆௚ೖషభ
T ௚ೖ

௚ೖషభ
T ௚ೖషభ

. 

This is the inner product of the previous change in the gradient with the 
current gradient divided by the norm squared of the previous gradient [42-43]. 

2.3. Conjugate Gradient with Powell/Beale restarts (CGB) 

For all conjugate gradient algorithms, the search direction is periodically reset to the 
negative of the gradient. The standard reset point occurs when the number of 
iterations is equal to the number of network parameters (weights and biases), but 
there are other reset methods that can improve the training efficiency.  

Such a reset method was proposed by P o w e l l [44], based on an earlier 
version proposed by B e a l e [45]. This technique restarts if there is very little 
orthogonality left between the current gradient and the previous gradient. This is 
tested by equation  

(7)   ห݃௞ିଵ
T ݃௞ห ൒ 0.2ԡ݃௞ԡଶ. 

If this condition is satisfied, the search direction is reset to the negative of the 
gradient. 
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2.4. Scaled Conjugate Gradient (SCG) 
Each of the conjugate gradient algorithms requires a line search at each iteration. 
This line search is computationally expensive, because it requires the network 
response to all training inputs to be computed several times for each search. SCG 
developed by M o l l e r [46], was designed to avoid the time-consuming line search. 
This algorithm combines the model-trust region approach with the conjugate 
gradient approach. 

2.5. One Step Secant (OSS) 
The OSS method is an attempt to bridge the gap between the conjugate gradient 
algorithms and the quasi-Newton (secant) algorithms. This algorithm does not store 
the complete Hessian matrix; it assumes that at each iteration, the previous Hessian 
was the identity matrix. This has the additional advantage that the new search 
direction can be calculated without computing the matrix inverse [47]. 

2.6. Resilient Back-propagation (RP) 
The most popular training algorithm of this category is the batch BP [48]. It is a 
first-order method that minimizes the error function by updating the weights using 
the steepest descent method [41]. 

The purpose of the Resilient back propagation (Rprop) training algorithm is to 
eliminate the harmful effects of the magnitudes of the partial derivatives. 

Only the sign of the derivative can determine the direction of the weight 
update; the magnitude of the derivative has no effect on the weight update. The size 
of the weight change is determined by a separate update value. The update value for 
each weight and bias is increased by a factor whenever the derivative of the 
performance function with respect to that weight has the same sign for two 
successive iterations. The update value is decreased by a factor whenever the 
derivative with respect to that weight changes the sign from the previous iteration. 
If the derivative is zero, the update value remains the same. When the weights are 
oscillating, the weight change is reduced. If the weight continues to change in the 
same direction for several iterations, the magnitude of the weight change  
increases [49]. 

3. Experimental results 

We have above implemented the Gradient algorithm on char74K Database [50] 
with MATLAB (Version 2012a) 10 times. The properties of the artificial neural 
network and the computer we used are listed in Table 1. You can see the results and 
the comparison among the methods in Figs 2-8. 
Table 1. Properties of our system and the neural network 
Train set 

size 
Test set 

size 
Validate set 

size 
Hidden 
layer 

No nodes in each 
hidden layer Output Performance Computer 

10850 2325 2325 2 30 62 10ିହ Apple MacBook 
Pro MD101 
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4. Conclusion 

In this paper we implement six different learning algorithms. OSS is good with 
respect to end-time but not so good in performance, RP method is good for OCR 
because of the low end-time and good performance. Besides, RP method has the 
best stability and a high number of iterations at each run, SCG method has good 
performance, but it does not have a good end-time, CGP has an average 
performance and it takes too long to end, CGP is average in both time and 
performance. CGB method has the worst performance and an average end-time. 
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